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Abstract

Likelihood-based finite sample inference based on synthetic data under the exponential model is

developed in this paper. Two distinct synthetic data generation scenarios are considered, one based

on posterior predictive sampling, and the other based on plug-in sampling. It is demonstrated that

valid inference can be drawn in both scenarios, even for a singly imputed synthetic dataset. The

usual combination rules for drawing inference under multiple synthetic datasets are discussed in

the context of likelihood-based data analysis.
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1 Introduction

Statistical agencies are often faced with two conflicting objectives: (1) collect and publish useful

datasets for designing public policies and building scientific theories, and (2) protect confidentiality

of survey respondents which is essential to uphold public trust, leading to better response rates

and data accuracy. Although cell suppression and swapping are two popular methods for statistical

disclosure control, use of noise-perturbed and synthetic datasets has gained considerable popularity

and importance in recent times.

In regard to noise perturbation of original microdata to protect confidentiality (Kim [1]; Kim

and Winkler [2], [3]; Little [4]), recently Nayak et al. [5] and Sinha et al. [6] discussed some

salient features and properties of noise-multiplied data in general terms; Lin and Wise [7] consid-

ered estimation of regression parameters based on noise-multiplied data; Klein et al. [8] developed

likelihood-based data analysis methods under noise-multiplication based on samples from expo-

nential, normal and lognormal populations; and Klein and Sinha [9] proposed an approach to

disseminate and analyze noise-multiplied data using multiple imputation.

The focus of this paper is to address some inferential aspects of statistical analysis based on

synthetic data when real datasets are not released and, as a substitute, synthetic datasets based on

the real data are created for publication and analysis. Rubin [10] first advocated use of synthetic

data for statistical disclosure control, using the framework of multiple imputation (Rubin [11]),

and argued that synthetic data so created do not correspond to any actual sampling unit, thus

preserving the confidentiality of the respondents. Inferential methods for fully synthetic data were

developed by Raghunathan et al. [12], and inferential methods for partially synthetic data were

developed by Reiter [13]. Reiter [14] presented an illustration and empirical study of fully synthetic

data. An overview of multiple imputation techniques, including its use in statistical disclosure

control, is provided by Reiter and Raghunathan [15]. There has been much research to further

develop synthetic data methodology, and a systematic account of the developments is provided

by Drechsler [16]. The methodology of partially synthetic data has been successfully applied to

a number of data products in the United States as described by Reiter and Kinney [17] and the

references therein.

The two methods considered in this paper for generation and analysis of synthetic data are

denoted by Case 1 and Case 2. To describe these two methods, suppose that x = (x1, . . . ,xn) are
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the original microdata which are jointly distributed according to the probability density function

(pdf) fθ(x), where θ is the unknown (scalar or vector) parameter.

Case 1: Posterior Predictive Sampling. Assume a prior π(θ) for θ, then the posterior dis-

tribution of θ given x is derived and used to draw m independent replications θ∗1, . . . ,θ
∗
m (known

as posterior draws). Next, for each such posterior draw of θ, a corresponding replicate of x is

generated, namely, zi = (zi1, . . . ,zin) is drawn from the pdf fθ∗i (x), where fθ∗i (x) denotes the joint

pdf of the original data x, with the unknown θ replaced by the posterior draw θ∗i . The synthetic

data Z = {zi = (zi1, . . . ,zin) : i = 1, . . . ,m} are then released to the public. For the scenario

described here, the usual practice for drawing inference on θ from the synthetic data is based on

the methods of Reiter [13] for partially synthetic data. To summarize, suppose Q = Q(θ) is a scalar

parameter of interest. Let η = η(x) denote a point estimator of Q and let V = V (x) denote an

estimator of the variance of η, both computed on the original data set x. To draw inference on θ

based on the synthetic data Z, one would compute ηi = η(zi) and Vi = V (zi), the analogs of η and

V , respectively, computed on the ith synthetic data set zi. Then the estimator of Q based on the

entire synthetic data Z is

η̄m =
1

m

m∑
i=1

ηi, (1)

and an estimator of the variance of η̄m is

Tm =
Bm
m

+ V̄m, (2)

where Bm = 1
m−1

∑m
i=1(ηi − η̄m)2 and V̄m = 1

m

∑m
i=1 Vi. An approximate level (1 − γ) confidence

interval for Q can be computed as η̄m ± tγ/2,vT
1/2
m where tγ/2,v is the upper γ/2 quantile of the t

distribution with degrees of freedom v = (m− 1)(1 +R−1
m )2 with Rm = Bm(mV̄m)−1.

Case 2: Plug-in Sampling. An alternative way to generate synthetic data is to take the observed

value of a point estimator θ̂(x) of θ, and plug it into the joint pdf of x. The resulting pdf, with the

unknown θ replaced by the observed value of the point estimator θ̂ = θ̂(x), is denoted by fθ̂(x).

The synthetic data, namely, Y = {yi = (yi1, . . . ,yin) : i = 1, . . . ,m} are generated by drawing each

yi independently from the joint pdf fθ̂(x). As discussed by Reiter and Kinney [17], in this scenario

the combination rules of Reiter [13] appear to remain valid. Thus to draw inference for the scalar

parameter Q = Q(θ), one can use the combination formulas of equations (1) and (2) along with
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the t confidence interval discussed above (obviously, with z1, . . . ,zm replaced by y1, . . . ,ym, that

is, ηi = η(yi) and Vi = V (yi)).

The motivations for this current research are twofold. First, although synthetic data methodol-

ogy calls for releasing m > 1 synthetic versions of the original data, there are situations where this

is not feasible, perhaps due to severe privacy concerns. For example, the Synthetic Longitudinal

Business Database, accessible through the VirtualRDC at Cornell University, is a synthetic version

of the U.S. Census Bureau’s Longitudinal Business Database (LBD). As discussed in Kinney et

al. [18], the decision was made to release only a single version of the LBD in the synthetic file,

instead of multiple copies, to avoid the perception of high disclosure risk. The usual combining

rules are not applicable when only a single synthetic data set is released (i.e. when m = 1), so one

wonders if it is possible to get a valid inference in this case. The results of this paper show that

it is indeed possible in some cases, if one fully utilizes the model structure. Secondly, irrespective

of how the synthetic data are generated, admittedly it is model-based and hence one wonders if

rigorous model-based finite sample inference about Q(θ) can be developed based on Z (Case 1) or

Y (Case 2). The results developed in this paper are used to obtain such a finite sample inference.

The organization of the paper is as follows. We develop likelihood-based inference for expo-

nential mean in Section 2, and provide some concluding remarks in Section 3. Throughout, we

derive the exact likelihood of synthetic data for both Cases 1 and 2, and carry out inference for

the exponential mean. In the sequel we also allow a general form of the prior π(θ) under Case 1,

involving a hyperparameter α, and make some recommendations about its choice. Our comparison

of the two approaches of synthetic data generation reveals some very interesting features. The

entire treatment is non-asymptotic in nature. We assume that the data user has knowledge of the

form of the parametric model fθ(x) of the original data, and that this model is used to create

the synthetic data as described above. Furthermore, in Case 1, we assume that knowledge of the

underlying prior is available to the data user for conducting the analysis.

2 Methodology for Drawing Likelihood Based Inference

Throughout this section, we work under the following notation and model. Suppose that the orig-

inal data x1, . . . , xn are independent and identically distributed (iid) according to the exponential

probability density function (pdf) fθ(x) = 1
θe
−x/θ, x > 0, where θ > 0 is the unknown param-
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eter. Writing x = (x1, . . . , xn) and u =
∑n

i=1 xi, note that u is a sufficient statistic for θ, with

u distributed as Gamma(n, θ), and the maximum likelihood estimator (MLE) of θ based on x is

θ̂MLE(x) = x̄ = u/n.

2.1 Case 1: Posterior Predictive Sampling

Inference Based on a Singly Imputed Synthetic Data Set. Under a Bayesian setting, we

would say that the synthetic data z are drawn from the posterior predictive distribution of x. We

take the prior distribution on θ as π(θ) ∝ θ−α, θ > 0. Using this prior and noting that u is sufficient

for θ, suppose that, conditional on u, a synthetic dataset z = (z1, . . . , zn) is generated as follows.

Step 1. Draw θ∗ from the posterior distribution of θ given u. The posterior takes the form of

the inverse gamma distribution having parameters (n + α − 1) and u; that is, draw

θ∗ from the pdf π(θ∗|u) = un+α−1

Γ(n+α−1)(θ∗)−(n+α−1)−1e−
u
θ∗ , θ∗ > 0.

Step 2. Given the value of θ∗ drawn in step 1, draw z1, . . . , zn as iid from the exponential

density fθ(z) = 1
θe
−z/θ, z > 0 with the unknown θ replaced by θ∗.

Central to our analysis based on z is its joint pdf or the likelihood function of θ based on z, given

by the following, where we write Z =
∑n

i=1 zi.

Theorem 2.1 The joint pdf of z is given by

hθ(z) =

∫ ∞
0

[
e−

Zξ
θ ξn

θn

] [
ξn+α−2

B(n, n+ α− 1)(1 + ξ)2n+α−1

]
dξ

which, interestingly enough, is a scale mixture of gamma with an F -type mixing distribution.

Proof. The proof of this result follows from the fact that the marginal pdf of z is given by

hθ(z) =

∫ ∞
0

∫ ∞
0

[
e−

1
θ∗Z

(θ∗)n

] [
un+α−1

Γ(n+ α− 1)
(θ∗)−(n+α−1)−1e−

u
θ∗

][
un−1e−

u
θ

Γ(n)θn

]
dθ∗du,

for z1 > 0, . . . , zn > 0, and thus, upon integrating out θ∗, we get

hθ(z) =

∫ ∞
0

[
Γ(2n+ α− 1)

(Z + u)2n+α−1

] [
un+α−1

Γ(n+ α− 1)

] [
1

Γ(n)θn
un−1e−

u
θ

]
du.
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Finally, we make a transformation from u to ξ = u/Z which yields the desired result. �

The MLE of θ which is obtained by maximizing this pdf is readily given by θ̂MLE(z) = Z
ηn,α

where ηn,α is the value of η that maximizes

Q1(η) = ηn
∫ ∞

0

e−ηξξ2n+α−2

(1 + ξ)2n+α−1
dξ.

The mean squared error (MSE) of the MLE is computed as (using expressions for E(Z) and E(Z2)

derived below)

MSE(θ̂MLE(z)) = θ2

[
n2(n+ 1)2

η2
n,α(n+ α− 2)(n+ α− 3)

− 2n2

ηn,α(n+ α− 2)
+ 1

]
.

Remark 2.1. One can verify that Z, which is obviously sufficient for θ, is also complete. Here is an

outline of the proof. Assume Eθ[g(Z)] = 0 for all θ > 0. Writing ξ
θ = η and changing the order of

integration, this is equivalent to

0 =

∫ ∞
0

[∫ ∞
0

e−Zηg(Z)dZ

]
η2n+α−2

(1 + θη)2n+α−1
dη.

Upon defining λ(η) = η2n+α−2[
∫∞

0 e−Zηg(Z)dZ], and noting that
∫∞

0 e−u(1+θη)u2n+α−2du = Γ(2n+

α− 1)(1 + θη)−(2n+α−1), we get

0 =

∫ ∞
0

[∫ ∞
0

e−u(1+θη)u2n+α−2du

]
λ(η)dη.

Finally, writing v = uθ, and changing the order of integration, we get

0 =

∫ ∞
0

e−
v
θ v2n+α−2

[∫ ∞
0

e−vηλ(η)dη

]
dv.

Now completeness of v implies that the inner integral above is 0 for all v (almost everywhere (a.e.)),

which in turn implies λ(η) = 0 for all η (a.e.), and hence g(Z) = 0 for all Z (a.e.).

Thus, while the computation of the MLE of θ based on the joint pdf of z is not explicit, the

uniformly minimum variance unbiased estimator (UMVUE) of θ based on Z is obtained as

θ̂UMVUE(z) =
n+ α− 2

n
Z̄, (3)

6



where Z̄ = Z
n . The variance of the UMVUE is computed (in several steps) as follows. Note that

E[Var(Z̄|θ∗)] = E

[
(θ∗)2

n

]
=

θ2(n+ 1)

(n+ α− 2)(n+ α− 3)
,

Var[E(Z̄|θ∗)] = Var(θ∗) = E[Var(θ∗|x)] + Var[E(θ∗|x)],

E[Var(θ∗|x)] = E

[
u2

(n+ α− 2)(n+ α− 3)
− u2

(n+ α− 2)2

]
=

n(n+ 1)θ2

(n+ α− 2)2(n+ α− 3)
,

Var[E(θ∗|x)] = Var

[
u

n+ α− 2

]
=

nθ2

(n+ α− 2)2
.

Combining the above terms, we get

Var(Z̄) = θ2

[
(n+ 1)

(n+ α− 2)(n+ α− 3)
+

n(n+ 1)

(n+ α− 2)2(n+ α− 3)
+

n

(n+ α− 2)2

]
= θ2 (n+ α)(2n+ 1) + n2 − 4n− 2

(n+ α− 2)2(n+ α− 3)
.

Hence, we get

Var(θ̂UMVUE(z)) =
θ2

n2

[
(n+ α)(2n+ 1) + n2 − 4n− 2

(n+ α− 3)

]
=
θ2

n2

[
2n+ 1 +

(n+ 1)2

n+ α− 3

]
. (4)

To construct a confidence interval for θ, one can verify that Z∗ = Z/θ is a pivot with its

distribution given as

h(z∗) =

∫ ∞
0

[
e−z

∗ξ(z∗)n−1ξn

Γ(n)

] [
ξn+α−2

B(n, n+ α− 1)(1 + ξ)2n+α−1

]
dξ.

If cn,α and dn,α satisfy:

∫ dn,α

cn,α

h(z∗)dz∗ = 1− γ, c2
n,αh(cn,α) = d2

n,αh(dn,α),

then the shortest 1 − γ level confidence interval for θ based on Z and the expected length of the

confidence interval are obtained, respectively, as

[
Z

dn,α
,
Z

cn,α

]
and E[L1(z)] =

n2θ

n+ α− 2

[
1

cn,α
− 1

dn,α

]
,
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where L1(z) = Z(1/cn,α − 1/dn,α).

Remark 2.2. It follows from (3) that only the choice α = 2 makes the standard estimator of θ,

namely, Z̄, unbiased for θ. This shows that the usual combination rule (suggesting Z̄) will not be

unbiased in this case unless α is appropriately chosen. However, we note that for fixed α, the bias

of Z̄ converges to zero as n→∞.

Inference Based on a Multiply Imputed Synthetic Dataset. Now we suppose that condi-

tional on u, the synthetic dataset consists of m > 1 replications of the original dataset generated by

repeating Steps 1 and 2 (from the beginning of Section 2.1) a total of m times to get the synthetic

data: (z11, . . . , z1n), . . ., (zm1, . . . , zmn). Thus, for multiple replications of z-values, which is the

usual synthetic data scenario, we denote by zij the jth synthetic value from the ith replication,

j = 1, . . . , n, i = 1, . . . ,m. Let Zi =
∑n

j=1 zij and Z = (Z1, . . . , Zm). One can check that the

vector Z is jointly sufficient for θ.

Theorem 2.2 The joint pdf of Z = (Z1, . . . , Zm) is

hθ(Z1, . . . , Zm) =

∫ ∞
0

[
m∏
i=1

un+α−1Zn−1
i

B(n, n+ α− 1)(u+ Zi)2n+α−1

][
e−

u
θ un−1

Γ(n)θn

]
du.

Proof. The proof follows upon noting that the conditional joint pdf of (Z1, . . . , Zm), given u, is the

product of individual densities of the form h(Zi|u) =
un+α−1Zn−1

i
B(n,n+α−1)(u+Zi)2n+α−1 . �

The MLE of θ, which is not explicit, can be obtained by maximizing this joint pdf with respect

to θ. Unlike in the case of m = 1, here Z1, . . . , Zm are jointly sufficient for θ, and obviously the

joint distribution is not complete, implying there is no obvious estimator of θ based on the Zi’s.

Letting ¯̄Z = 1
mn

∑m
i=1 Zi, it can be shown that

θ̃1 =
n+ α− 2

n
¯̄Z (5)

is an unbiased estimator of θ with

Var(θ̃1) =
θ2

mn2

[
mn+ n+ 1 +

(n+ 1)2

n+ α− 3

]
. (6)

Likewise, using the fact that E[Zγ1 |u] =
[
B(n+γ,n+α−1−γ)

B(n,n+α−1)

]
uγ , it follows that
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E

[
m∏
i=1

Zγi

]
=

[
B(n+ γ, n+ α− 1− γ)

B(n, n+ α− 1)

]m
E[umγ ].

Taking γ = 1
m and noting that E(u) = nθ, a second unbiased estimator of θ based on the geometric

mean of (Z1, . . . , Zm) is given by

θ̃2 =
1

n

[
m∏
i=1

Z
1
m
i

][
B(n+ 1

m , n+ α− 1− 1
m)

B(n, n+ α− 1)

]−m
, (7)

and its variance is

Var(θ̃2) = θ2

[
n+ 1

n

{
B(n, n+ α− 1)B(n+ 2

m , n+ α− 1− 2
m)

B2(n+ 1
m , n+ α− 1− 1

m)

}m
− 1

]
. (8)

It is also possible to suggest other unbiased estimators of θ based on Z(1) = min{Z1, . . . , Zm} and

Z(m) = max{Z1, . . . , Zm}.

Since V = (V1, . . . , Vn) = (Z1
θ , . . . ,

Zm
θ ) is a pivot with the joint pdf

h(v) =

∫ ∞
0

[
m∏
i=1

tn+α−1vn−1
i

B(n, n+ α− 1)(t+ vi)2n+α−1

] [
e−ttn−1

Γ(n)

]
dt,

confidence intervals for θ based on suitable combinations of them (arithmetic mean, geometric

mean, minimum, maximum) can be derived, and these can be compared with the one based on

Plug-in Sampling method discussed in the next section.

2.2 Case 2: Plug-in Sampling

Following Reiter and Kinney [17], here a synthetic data set y = (y1, . . . , yN ) of size N is generated

by drawing y1, . . . , yN as iid from the exponential density fθ(y) = 1
θe
−y/θ, y > 0, with the unknown

parameter θ set equal to θ̂MLE(x) = x̄ = u/n. Notice that N , the size of the synthetic sample, is

not necessarily taken to be equal to n, the size of the original sample. In the case of m multiply

imputed synthetic data sets, one would take N = nm, while for a singly imputed synthetic data

set, one would simply take N = n. Regardless of the choice of N , it is assumed that the value

of the original sample size n is known to the data analyst, as this value will be needed to apply

the methodology developed in this section. The goal now is to draw inference on θ based on the
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synthetic data y. Central to this goal is the joint pdf of y, or the likelihood function of θ based on

y, which is stated below.

Theorem 2.3 The joint pdf of y is given by

gθ(y) =

∫ ∞
0

[
nN

uN
e−

n
u

∑N
1 yi

] [
1

Γ(n)θn
un−1e−u/θ

]
du. (9)

Proof. The proof depends on the simple fact that the conditional pdf of y, given u, is

g(y|u) =

N∏
i=1

[n
u
e−nyi/u

]
=
nN

uN
e−

n
u

∑N
1 yi , y1 > 0, . . . , yN > 0.

�

Trivially, the statistic t =
∑N

i=1 yi is sufficient for θ in model (9), and its pdf (by the same

conditional argument) is given by

gθ(t) =

∫ ∞
0

[
nN

Γ(N)uN
tN−1e−

nt
u

] [
1

Γ(n)θn
un−1e−u/θ

]
du, t > 0, (10)

which is a scale mixture of gamma. The MLE of θ can be obtained by maximizing gθ(t) with

respect to θ. Writing ψ = u
θ , gθ(t), apart from a constant, can be expressed as

gθ(t) ∝
tN−1

θN

∫ ∞
0

e
−ψ− nt

θψψn−N−1dψ.

Putting η = t/θ, we choose η by maximizing

Q2(η) = ηN
∫ ∞

0
e
−ψ−nη

ψ ψn−N−1dψ

over 0 < η < ∞. If ηn,N is the maximizer, the MLE of θ is given by θ̂MLE(y) = t
ηn,N

. The mean

squared error (MSE) of the MLE is computed as

MSE(θ̂MLE(y)) = E

[
t2

η2
n,N

− 2
tθ

ηn,N
+ θ2

]
= θ2

[
N(n+ 1)(N + 1)

nη2
n,N

− 2
N

ηn,N
+ 1

]
.

On the other hand, it is easy to verify that the pdf of t given by (10) is complete. This is be-

cause if ω(t) satisfies Eθ[ω(t)] = 0, for all θ, by changing the order of integration, it follows that
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∫∞
0 ω(t)e−

nt
u tN−1dt = 0 for all u, which implies ω(t) = 0 (a.e.). Hence the UMVUE of θ based on

t and its variance are readily obtained as

θ̂UMVUE(y) = t̄ =
t

N
, (11)

Var(θ̂UMVUE(y)) = Var(t̄) = θ2

[
1

n
+

1

N
+

1

nN

]
. (12)

In the above, Var(t̄) is obtained by using the facts that E(t) = Nθ and E(t2) = N(N+1)(n+1)
n θ2,

which follow by the usual conditional argument based on u.

To construct a confidence interval for θ based on t, we note that t∗ = t/θ is a pivot. This is

because the marginal pdf of t∗ is

gθ(t
∗) =

∫ ∞
0

[
nN

Γ(N)uN
(θt∗)N−1e−

n
u
θt∗θ

] [
1

Γ(n)θn
un−1e−u/θ

]
du

=

∫ ∞
0

[
nN

Γ(N)uN
θN (t∗)N−1e−

n
u
θt∗
] [

1

Γ(n)θn
un−1e−u/θ

]
du, t∗ > 0.

Writing ξ = u
θ , dξ = du

θ , we can express gθ(t
∗) as

g(t∗) =

∫ ∞
0

[
nN

Γ(N)ξN
(t∗)N−1e

−n
ξ
t∗
] [

1

Γ(n)
ξn−1e−ξ

]
dξ

=
nN (t∗)N−1

Γ(N)Γ(n)

∫ ∞
0

e
−ξ−nt

∗
ξ ξn−N−1dξ

which is clearly free of θ, and can be used to construct a confidence interval for θ. Thus, if an,N

and bn,N satisfy ∫ bn,N

an,N

g(t∗)dt∗ = 1− γ, a2
n,Ng(an,N ) = b2n,Ng(bn,N ),

then the shortest 1−γ level confidence interval for θ based on t and its expected length are obtained,

respectively, as [
t

bn,N
,

t

an,N

]
and E[L2(y)] = Nθ

[
1

an,N
− 1

bn,N

]
,

where L2(y) = t(1/an,N − 1/bn,N ).

Remark 2.3. Taking N = n and comparing (4) and (12), it follows that θ̂UMVUE(y) has a smaller

variance than θ̂UMVUE(z), whatever be α.
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Remark 2.4. Table 1 presents a comparison of Cases 1 and 2 based on their expected length of the

95% confidence intervals for θ, scaled by θ, when N = n. The results in the table clearly indicate

that Case 2 yields shorter expected length of confidence intervals than Case 1.

Remark 2.5. It is interesting to compare the unbiased estimator of θ, namely t̄ (defined in (11)),

with the unbiased estimators θ̃1 and θ̃2 (defined in (5) and (7)), based on the arithmetic mean

and geometric mean, respectively. Some numerical values of the variances of these three estimators

appear in Table 2 for N = nm. Surprisingly enough, θ̃2 turns out to be marginally better than θ̃1 in

the scenarios considered, implying that the usual arithmetic mean combination approach need not

always be preferable. Both θ̃1 and θ̃2 are found to be inferior to t̄; that is, the unbiased estimator

under Case 2 is more efficient than those obtained under Case 1.

Table 1: Cut-off points and scaled expected length (scaled by θ) of the 95% confidence interval for
the exponential mean θ

Plug-in sampling Posterior predictive sampling
α = 1 α = 2

n an bn
E[L2(y)]

θ cn,α dn,α
E[L1(z)]

θ cn,α dn,α
E[L1(z)]

θ

10 4.1 28.2 2.1 3.7 45.0 2.5 3.4 39.1 2.7
15 7.4 33.8 1.6 6.7 46.9 1.9 6.3 43.4 2.0
20 10.8 39.9 1.3 9.9 51.7 1.6 9.6 48.3 1.7
25 14.4 46.3 1.2 13.3 57.2 1.4 12.9 54.1 1.5
30 18.2 52.2 1.1 16.9 62.6 1.3 16.4 60.2 1.3
50 34.1 75.8 0.8 31.9 86.5 1.0 31.5 84.2 1.0

Table 2: Numerical values of Var(t̄), Var(θ̃1) and Var(θ̃2)

Plug-in sampling Posterior predictive sampling
α = 1 α = 2

m n Var(t̄) Var(θ̃1) Var(θ̃2) Var(θ̃1) Var(θ̃2)

5 10 0.122 0.152 0.147 0.149 0.145
15 0.081 0.098 0.096 0.097 0.095
20 0.061 0.073 0.072 0.072 0.071
25 0.048 0.058 0.057 0.057 0.057
30 0.040 0.048 0.047 0.048 0.047
50 0.024 0.028 0.028 0.028 0.028
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3 Concluding Remarks

In this paper, we have derived finite sample likelihood based methods of inference for synthetic

data when the original data follow the exponential model and the synthetic data are generated

either by posterior predictive sampling (Case 1) or by plug-in sampling (Case 2). We provided

some comparisons between Case 1 and Case 2, and found that in general plug-in sampling yields

more efficient inference than posterior predictive sampling. We have found that in Case 1, for finite

n, the usual suggested estimator of θ based on single or multiple imputation exhibits bias unless

α is suitably chosen. Also, in Case 2, if the original data are iid and m synthetic data sets are

generated, then there is an arbitrariness in the usual combining rule for estimating variance, since

there is no unique way to partition the data into m synthetic data sets. The methods developed in

this paper however do not have this arbitrary nature.

The inferential methods developed in this paper are naturally somewhat more complicated to

apply than the standard inferences based on the simple multiple imputation combining formulas.

However, the methods in this paper have the desirable property that they are exact, and based on

sufficient statistics. Furthermore, these methods allow a data user to draw valid inference when

only a single synthetic data set is released which is useful in cases where (perhaps due to privacy

concerns or limitations in resources) a statistical agency releases a single synthetic data set instead

of multiple synthetic copies.
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